Ahorro y Eficiencia Energética, Economy, Link Video YouTube, Social

Dimmer para LEDs

Dimmer para LEDs

Por:  Mario Sacco @  sábado, 19 de febrero de 2011

|

La iluminación LED está expandiéndose de una manera sorprendente tanto en el mercado de consumo como en el industrial. Hace poco tiempo resultaba raro encontrar una casa iluminada en su totalidad con LEDs; sin embargo, hoy es algo que no llama la atención. Lo mismo ocurre en un automóvil, en el alumbrado público y en muchas aplicaciones más. Para variar la intensidad lumínica de estos elementos se utiliza control por PWM y se logra una alta eficiencia con un ahorro energético considerable. El montaje que hoy te mostramos utiliza un circuito integrado de Maxim, el MAX16805/MAX16806, que te sorprenderá por su sencillez de uso y sus prestaciones. La iluminación del futuro, hoy en NeoTeo.

La serie de circuitos integrados MAX16800 de Maxim posee un rango de tensión de entrada tan interesante como alto. Preparados para trabajar hasta con 40Volts de tensión de entrada, estos Dimmers o “atenuadores activos” son ideales para aplicaciones en automóviles y en instalaciones donde se utilicen tensiones comprendidas entre 12Vots y 24Volts. Es decir, están diseñados de manera específica para que puedan ser conectados de manera directa a la batería de un coche (a su instalación eléctrica) sin necesidad de protección contra picos de tensión. Recordemos que el ámbito de un vehículo puede ser hostil para los sistemas electrónicos y en la mayoría de los casos las medidas de protección necesarias deben ser importantes. Sin embargo, en el caso de estos dispositivos, ese cuidado no requiere mayores atenciones. El circuito integrado genera una corriente constante hacia los LED que se puede establecer y pre-determinar por una resistencia específica, Rsense, que se conecta en serie con los diodos LEDs. Para mejorar la precisión y aumentar la inmunidad al ruido externo, la línea de circuitos MAX16800 utiliza una entrada configurada en modo diferencial (CS+CS-) para determinar el sentido de lacorriente y la real caída de tensión sobre Rsense.

MAX16805 y su encapsulado 20TQFN en su módulo adaptador
MAX16805 y su encapsulado 20TQFN en su módulo adaptador

El mejor desempeño de un sistema de atenuación de brillo para diodos LEDs se obtiene mediante la modulación por ancho de pulso (PWM). Una de las opciones de operación de la serie MAX16800 es mediante la aplicación de una señal PWM a la entrada de habilitación. De este modo, la corriente a través de los LED se conecta o no y se apaga al ritmo establecido por la señal PWM de control externo. La inmunidad a la interferencia electromagnética (EMI) es importante en aplicaciones automotrices. Posee igual importancia el hecho de no generar EMI que pueda perjudicar el normal funcionamiento de otros sistemas electrónicos dentro del mismo vehículo. La conmutación de la corriente (al encender y apagar el/los LEDs) es, sin embargo, una fuente típica de la radiación de EMI. Por lo tanto, para reducir las emisiones de interferencias electromagnéticas durante el trabajo del PWM y la regulación del trabajo externo, los MAX16800 utilizan circuitos elaborados de manera tal que sean capaces de suavizar los bordes de la conmutación de las señales y de este modo reducir de manera notable la emisión de ruido eléctrico al exterior desde el encapsulado que alberga al circuito.

PCB del módulo para montar el MAX16805
PCB del módulo para montar el MAX16805

Muchas aplicaciones de iluminación no requieren de un microcontrolador para generar la señal PWM de regulación. Los circuitos integrados “LED Drivers” MAX16805 yMAX16806 están disponibles para esas situaciones. Ambos pueden generar una señalPWM de manera interna  con una “modulación” establecida por una tensión externa que se aplica a la entrada DIM. El MAX16806 también tiene la posibilidad de conectar un interruptor de entrada (SW) para reemplazar la configuración de un potenciómetro analógico. Es decir, ambos dispositivos pueden manejarse mediante una señal PWMexterna proveniente desde un microcontrolador, además de poder funcionar de manera autónoma y solitaria gracias al ajuste de un simple potenciómetro o de un pulsador de “On-Off” (MAX16806). La detección del modo de operación es automática y el circuito integrado adopta el modo de trabajo que se le indica a través de este pin (DIM). En el caso de optar por un control mediante PWM, el dispositivo sincroniza su generador interno dePWM con la señal externa (que puede variar en un rango de frecuencias desde los 80Hz a los 2Khz) y sobre ella aplica la modulación PWM.  (0 a 100%  duty-cycle). Por su parte, una tensión analógica (entregada por un potenciómetro) que pueda variar entre 0,2 y 3Volts proporcionará un control total de la iluminación desde un mínimo a un máximo.

Diagrama de conexionado del MAX16805/MAX16806
Diagrama de conexionado del MAX16805/MAX16806

En algunas aplicaciones de iluminación se realiza un seguimiento muy cuidado de las condiciones de temperatura de trabajo de los LEDs. Esta práctica se profundiza de manera especial en lugares con limitaciones de espacio donde la disipación de calor es pobre. El exceso de temperatura de trabajo de un LED reduce su vida útil y por lo tanto se contrapone a una de las principales ventajas de esta fuente de luz: su larga duración respecto a los sistemas conocidos (CFL, incandescentes, etc.). Afortunadamente, esta situación se puede evitar mediante la reducción del brillo del LED o, lo que sería lo mismo, mediante la atenuación del ciclo de trabajo del LED. El MAX16806 tiene entradas para un sensor de temperatura exterior (de trabajo de los LEDs) y posee además un sistema de control de temperatura de trabajo que evita el sobre-calentamiento del propio chip (Over Temperature Protection). Cuando un exceso de temperatura se detecta, el dispositivo aumenta la atenuación del ciclo de trabajo hasta que la temperatura vuelve a un valor aceptable. Los umbrales de temperatura y la regulación deseada se pueden programar con la interfaz serie (bus I2C) y se puede almacenar en la memoria EEPROM que trae incorporado el dispositivo. Esta característica de detección de temperatura elimina la necesidad de un disipador de calor, cuidando de este modo los costos y el ahorro de tamaño de construcción.

Como mencionamos antes, se realiza la programación de los registros del MAX16805 y en ellos podemos ajustar valores diversos como: la corriente de trabajo del sistema final, los umbrales de temperatura de los LEDs y del propio IC, los valores deseados para la excursión de la rampa que, potenciómetro mediante, determinará el nivel de iluminación entregado por los LEDs, y otras variables tales como el valor de tensión diferencial de entrada del sensor de corriente de LEDs. De todos modos, las hojas de datos delMAX16805MAX16806 son muy claras en cuanto a los valores que adquieren los registros a la hora de conectar el circuito integrado a la tensión de alimentación. Debemos recordar que los registros siempre retornan a un valor “de inicio” y no retienen los datos a cada corte de energía. Para estos casos, mediante el bus I2C, el sistema de control se debe encargar de leer la EEPROM interna del dispositivo y cargarla en los respectivos registros a la hora de una puesta en funcionamiento desde cero. Para el caso de la rampa que puede manejar el potenciómetro, se comprenden valores desde 0 a 3Volts. En tanto que para laRsense, se debe considerar que sobre ella caerá una tensión de 198mV.

El montaje de los 36 LEDs blancos de 10 milímetros sobre un protoboard
El montaje de los 36 LEDs blancos de 10 milímetros sobre un protoboard

Con los valores mencionados anteriormente podemos construir de manera muy sencilla nuestro Dimmer para diodos LED. Utilizando el regulador de 5Volts que incorpora el circuito integrado, podemos utilizar un resistor variable de 25K y una serie formada por una resistencia de 12K y otra de 4K7. De ese modo, sobre el potenciómetro tendremos 3Volts y una regulación en todo el rango de trabajo. Mientras tanto, para el caso de laRsense, debemos saber de antemano cuántos diodos LED utilizaremos. En nuestro caso, que decidimos utilizar un arreglo de 36 LEDs, consideramos 12 conjuntos series (todo en paralelo) de 3 LEDs trabajando a una corriente de 20mA aproximadamente para cada rama de 3 LEDs. Esto resulta en una corriente total de 240mA. Por lo tanto, el resultado de dividir 0,198Volts (198mV) por los 0,24A (240mA) nos brinda un valor de Rsense igual a 0,825 Ohms.

Circuito utilizado en los ensayos con 36 LEDs y el MAX16805
Circuito utilizado en los ensayos con 36 LEDs y el MAX16805

Como a ese valor no lo teníamos a mano, calculamos la corriente para una resistencia de 1 Ohm y el resultado obtenido fue de 198mA para la totalidad de los LEDs. Distribuyendo esta corriente por las 12 ramas, obtenemos una corriente de 16,5mA para cada serie de 3 LEDs, una corriente muy segura que nos brindará una larga vida a los LEDs utilizados. Por último, podemos contarte que estos IC se pueden obtener solicitándolos como muestras gratis (samples) a Maxim desde su sitio web. Sintransistores de potencia externos, sin microcontroladores ni circuitos especiales. Sólo el MAX16805/MAX16806, un par de resistencias y capacitores y allí tienes un completoDimmer para LEDs de alta eficiencia que se ajusta a cada necesidad. ¡Disfrútalo y muéstranos tus resultados en el Foro de Electrónica de NeoTeo!

 

Estándar

Responder

Por favor, inicia sesión con uno de estos métodos para publicar tu comentario:

Logo de WordPress.com

Estás comentando usando tu cuenta de WordPress.com. Cerrar sesión / Cambiar )

Imagen de Twitter

Estás comentando usando tu cuenta de Twitter. Cerrar sesión / Cambiar )

Foto de Facebook

Estás comentando usando tu cuenta de Facebook. Cerrar sesión / Cambiar )

Google+ photo

Estás comentando usando tu cuenta de Google+. Cerrar sesión / Cambiar )

Conectando a %s